Part Number Hot Search : 
TC6H207 AN8245 UPD17234 4ALVC UM810AEP 6717MX 2108A ZVN3310F
Product Description
Full Text Search
 

To Download G511104 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Global Mixed-mode Technology Inc.
G5111
Micro-power Step-Up DC/DC Converters in SOT-23-5
Features
Configurable Output Voltage Up to 28V 20A Quiescent Current <1A Shutdown Current <1A Shutdown Pin Current Supply Range from 2.5V to 6.5V Low VDS(on): 250mV (ISW=300mA) Tiny SOT-23-5 Package
General Description
The G5111 boost converter is designed for small/ medium size LCD panel of high bias voltage. Due to a typical 20A quiescent current and 2.5V~ 6.5V supply voltage range, it is suitable for battery powered portable applications. Such as PDAs and Handheld Computers. When the IC sets to shutdown mode, it only consumes less than 1A. Furthermore, the 350mA current limit, 500ns fixed minimum off-time and tiny SOT-23-5 package facilitates the use of smaller inductor and other surface-mount components to minimize the PCB size in those space-conscious applications. To control the IC, no other external current is needed for the shutdown pin. It typically consumes less than 1A of full supply range.
Applications
STN/TFT LCD Bias Personal Digital Assistants (PDAs) Handheld Computers Digital Still Cameras Cellular Phones WebPad White LED Driver Local 3V to 5V Conversion
Ordering Information
ORDER NUMBER
G5111T11U G5111T12U
ORDER NUMBER (Pb free)
G5111T11Uf G5111T12Uf
MARKING
51xx 52xx
TEMP. RANGE
-40C ~ +85C -40C ~ +85C
PACKAGE
SOT-23-5 SOT-23-5
Pin Configuration
Typical Application Circuit
SW
1
5
VCC 10H VIN 2.5V to 4.2V VCC SW 1M 20V 12mA
GND 2
G5111 T11
G963
FB 3 4 SHDN
SOT-23-5
G5111
SHDN FB 62k 1F 4.7F GND
SHDN 1
5
FB
VCC 2
G5111 T12
G963
GND 3 4 SW
SOT-23-5
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
1
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
SW to GND.........................................-0.3V to +30V FB to GND............... ............................-0.3V to VCC VCC, SHDN to GND....................................-0.3V to +7V Operating Temperature Range (Note 1)..-40C to +85C
G5111
Junction Temperature .......................................+125C Storage Temperature.........................-65C to +150C Reflow Temperature (soldering, 10sec)............260C
Stress beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device.
Electrical Characteristics
(VCC = 3.6V, V SHDN = 3.6V, TA = 25C)
PARAMETER
Input Voltage Range Quiescent Current FB Comparator Trip Point Output Voltage Line Regulation FB Pin Bias Current (Note 2) Switch Off Time Switch VDS(ON) Switch Current Limit
SHDN Pin Current
SHDN Input Voltage High SHDN Input Voltage Low
CONDITIONS
Not Switching V SHDN = 0V 2.5V 1V VFB < 0.6V ISW = 300mA
MIN
2.5 ----1.18 ----------300 --0.9 ---
TYP
--20 0.1 1.2 -0.05 30 500 1.6 250 350 0.1 ----0.01
MAX
6.5 35 1 1.22 --80 ----350 400 1 --0.25 5
UNITS
V A A V %/V nA ns s mV mA A V V A
Switch Leakage Current
Switch Off, VSW = 28V
---
Note 1: The G5111 are guaranteed to meet performance specifications from 0C to 85C. Specifications over the -40C to 85C operating temperature range are assured by design, characterization and correlation with statistical process controls. Note 2: Bias current flows into the FB pin.
Block Diagram
L1 VIN C1 VCC SHDN SW C2 VOUT
BIAS VOUT
SHUTDOWN LOGIC PUMP CONTROL OC DRIVER COMP en_sw + TOFF PULSE CONTROL
R1 +
ERROR COMP
FB R2
1.2V
VREF
GND
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
2
Global Mixed-mode Technology Inc.
Typical Performance Characteristics
(VCC=+3.6V, V SHDN =+3.6V, L=10H, TA=25C, unless otherwise noted.)
G5111
Output Voltage vs. Load Current
21
Output Voltage vs. Input Voltage
21
Output Voltage (V)
Output Voltage (V)
20.5 IOUT=1mA 20 IOUT=10mA
20.5 VIN=2.7V 20 VIN=4.2V 19.5
19.5
19
2.5 3 3.5 4 4.5 5 5.5
19
1 2 3 4 5 6 7 8 9 10
Input Voltage (V)
Load Current (mA)
Efficiency vs. Load Current
90
Quiescent Current vs. Temperature
50
Quiescent Current (A)
85 80
VIN=4.2V
40
Efficiency (%)
75 70 65 60 55 50
0.1
VIN=3.6V
VIN=2.7V
30
VIN=4.2V
20
VIN=2.7V
10
1 10 100 -20 0 20 40 60 80 100
Load Current (mA)
Temperature (C)
Vds_on vs. Temperature
500 1.22
Feedback Voltage vs. Temperature
Feedback Voltage (V)
Switch Vds_on (mV)
400 VIN=2.7V 300
1.21 VIN=2.7V 1.2
200
VIN=4.2V
1.19
VIN=4.2V
100
-20 0 20 40 60 80 100
1.18
-20 0 20 40 60 80 100
Temperature (C)
Temperature (C)
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
3
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
G5111
Switch Current Limit vs. Temperature
450
FB Bias Current vs. Temperature
30
Feedback Bias Current (nA)
VIN=2.7V
Peak Current (mA)
400
VIN=4.2V
25
350
VIN=2.7V
20
VIN=4.2V
300
15
-20 0 20 40 60 80 100
250
-20 0 20 40 60 80 100
Temperature (C)
Temperature (C)
Line Transient
Load Transient
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
4
Global Mixed-mode Technology Inc.
Pin Description
PIN T11
1 2 3 4 5
G5111
T12
4 3 5 1 2
NAME
SW GND FB
SHDN
FUNCTION
Switch Pin. The drain of the internal NMOS power switch. Connect this pin to inductor. Ground. Feedback Pin. Set the output voltage by selecting values for R1 and R2 (see Block Diagram): R1 = R2
VOUT -1 1 .2
VCC
Active-Low Shutdown Pin. Tie this pin to logic-high to enable the device or tied it to logic-low to turn this device off. Input Supply Pin. Bypass this pin with a capacitor as close to the device as possible.
Function Description
The G5111 is a boost converter with a NMOS switch embedded (refer to Block Diagram). The boost cycle is getting started when FB pin voltage drop below 1.2V as the NMOS switch turns on. During the switch on period, the inductor current ramps up until 350mA current limit is reached. Then turns the switch off, while the inductor current flows through external schottky diode, and ramps down to zero. During the switch off period, the inductor current charges output capacitor and the output voltage is boosted up. This pumping mechanism continues cycle by cycle until the FB pin voltage exceed 1.2V and entering the none switching mode. In this mode, the G5111 consumes as low as 20A typically to save battery power.
Where VD = 0.4V (Schottky diode voltage), ILIM = 350mA and tOFF = 500ns. A larger value can be used to lightly increase the available output current, but limit it to about twice the calculating value. When too large of an inductor will increase the output voltage ripple without providing much additional output current. In varying VIN condition such as battery power applications, use the minimum VIN value in the above equation. A smaller value can be used to give smaller physical size, but the inductor current overshoot will be occurs (see Current Limit Overshoot section). Inductor Selection--SEPIC Regulator For a SEPIC regulator using the G5111, the approximate inductance value can be calculated by below formula. As for the boost inductor selection, a larger or smaller value can be used. L=2 VOUT + VD ILIM x tOFF
Applications Information
Choosing an Inductor There are several recommended inductors that work well with the G5111 in Table 1. Use the equations and recommendations in the next few sections to find the proper inductance value for your design. Table 1. Recommended Inductors
PART
LQH3C4R7 LQH3C100 LQH3C220 CD43-4R7 CD43-100 CDRH4D18-4R 7 CDRH4D18-100 DO1608-472 DO1608-103 DO1608-223
VALUE(H) MAX DCR ()
4.7 10 22 4.7 10 4.7 10 4.7 10 22 0.26 0.30 0.92 0.11 0.18 0.16 0.20 0.09 0.16 0.37
VENDOR
Murata www.murata.com Sumida www.sumida.com
Current Limit Overshoot The G5111 use a constant off-time control scheme, the power switch is turned off after the 350mA current limit is reached. When the current limit is reached and when the switch actually turns off, there is a 100ns delay time. During this time, the inductor current exceeds the current limit by a small amount. The formula below can calculate the peak inductor current. IPEAK = ILIM + VIN(MAX) - VSAT x 100ns L
Coilcraft www.coilcraft.com
Inductor Selection--Boost Regulator The appropriate inductance value for the boost regulator application may be calculated from the following equation. Select a standard inductor close to this value. L= VOUT-VIN(MIN)+VD x tOFF ILIM
Where VSAT = 0.25V (switch saturation voltage). When the systems with high input voltages and uses smaller inductance value, the current overshoot will be most apparent. This overshoot can be useful as it helps increase the amount of available output current. To use small inductance value for systems design, the current limit overshoot can be quite high. Even if it is internally current limited to 350mA, the power switch of the G5111 can operate larger currents without any problem, but the total efficiency will suffer. The IPEAK is keep below 500mA for the G5111 will be obtained best performance.
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
5
Global Mixed-mode Technology Inc.
Capacitor Selection Low ESR (Equivalent Series Resistance) capacitors should be used at the output to minimize the output ripple voltage and the peak-to-peak transient voltage. Multilayer ceramic capacitors (MLCC) are the best choice, as they have a very low ESR and are available in very small packages. Their small size makes them a good match with the G5111's SOT-23-5 package. If solid tantalum capacitors (like the AVX TPS, Sprague 593D families) or OS-CON capacitors are used, they will occupy more volume than a ceramic ones and the higher ESR increases the output ripple voltage. Notice that use a capacitor with a sufficient voltage rating. A low ESR surface-mount ceramic capacitors also make a good selection for the input bypass capacitor, which should be placed as close as possible to the G5111. A 4.7F input capacitor is sufficient for most applications. Diode Selection For most G5111 applications, the high switching frequency requires a high-speed rectifier Schottky diodes, such as the Motorola MBR0530 (0.5A, 30V) with their low forward voltage drop and fast switching speed, are
G5111
recommended. Many different manufacturers make equivalent parts, but make sure that the component is rated to operate at least 0.35A. To achieve high efficiency, the average current rating of the Schottky diodes should be greater than the peak switching current. Choose a reverse breakdown voltage greater than the output voltage. Lowering Output Voltage Ripple The G5111 supplies energy to the load in bursts by ramping up the inductor current, then delivering that current to the load. To use low ESR capacitors will help minimize the output ripple voltage, but proper selection of the inductor and the output capacitor also plays a big role. If a larger inductance value or a smaller capacitance value is used, the output ripple voltage will increase because the capacitor will be slightly overcharged each burst cycle. To reduce the output ripple, increase the output capacitance value or add a 10pF feed-forward capacitor in the feedback network of the G5111 (see the circuits in the Typical Applications section). To add this small, inexpensive 10pF capacitor will greatly reduce the output voltage ripple.
Typical Applications
Boost Converter
SEPIC Converter
L1 4.7H VIN 2.5V to 4.2V VCC SW
D1
L1 10H 5V 50mA VIN 2.5V to 4.2V VCC R1 390k SW
C3 1F
D1
3.3V 60mA
L2 10H C2 22F
R1 470k C2 22F
G5111
SHDN C1 4.7F GND FB R2 120k
G5111
SHDN C1 4.7F GND FB R2 270k
L1:MURATA LQH3C4R7M24 D1:MOTOROLA MBR0520
L1,L2:MURATA LQH3C100K24 D1:MOTOROLA MBR0520
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
6
Global Mixed-mode Technology Inc.
White LED Driver
G5111
L1 10H/0.5A VBAT 2.5V~5.5V C1 4.7F VCC SW
D1
MBR0530 C2 1F D2(Optional) 27V
G5111
ON/OFF Control SHDN FB
GND
R2 R3 VBIAS(+3.3V) 308k_1% R4 660k_1% PWM Dimming Control VH=3.3V VL=0V Freq=160~240Hz 120k_1% R1 30_1%
PWM Dim
Dimming Ratio>50:1 Drive 2~8 White LEDs
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
7
Global Mixed-mode Technology Inc.
Package Information
G5111
C L
D
E
H
e1 e
1
A A2 A1
b
Note: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance 0.1000 mm (4mil) unless otherwise specified 3. Coplanarity: 0.1000mm 4. Dimension L is measured in gage plane SYMBOLS
A A1 A2 b C D E e e1 H L 1
DIMENSIONS IN MILLIMETERS MIN
1.00 0.00 0.70 0.35 0.10 2.70 1.40 --------2.60 0.37 1
NOM
1.10 ----0.80 0.40 0.15 2.90 1.60 1.90(TYP) 0.95 2.80 -----5
MAX
1.30 0.10 0.90 0.50 0.25 3.10 1.80 --------3.00 ----9
Taping Specification
PACKAGE
SOT-23-5
Q'TY/BY REEL
3,000 ea
Feed Direction
SOT-23-5 Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
Ver: 1.2 Sep 09, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
8


▲Up To Search▲   

 
Price & Availability of G511104

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X